Digital Circuit Optimization via Geometric Programming
نویسندگان
چکیده
This paper concerns a method for digital circuit optimization based on formulating the problem as a geometric program (GP) or generalized geometric program (GGP), which can be transformed to a convex optimization problem and then very efficiently solved. We start with a basic gate scaling problem, with delay modeled as a simple resistor-capacitor (RC) time constant, and then add various layers of complexity and modeling accuracy, such as accounting for differing signal fall and rise times, and the effects of signal transition times. We then consider more complex formulations such as robust design over corners, multimode design, statistical design, and problems in which threshold and power supply voltage are also variables to be chosen. Finally, we look at the detailed design of gates and interconnect wires, again using a formulation that is compatible with GP or GGP.
منابع مشابه
Design of a Novel Current Starved VCO via Constrained Geometric Programming
Presently the design of the optimal analog and mixed signal (AMS) circuits with lesser design cycle time is a great challenge for the designers. This paper describes the optimization of the current starved voltage controlled oscillator (CSVCO) circuit. The objective functions and constraints of the CSVCO circuit are in the form of posynomial functions of the design variables. The convex optimiz...
متن کاملOptimization of Phase-Locked Loop Circuits via Geometric Programming
We describe the global optimization of phaselocked loop (PLL) circuits using geometric programming (GP). Equations for the jitter, frequency range, and power of the PLL are presented in GP form. An array of PLL circuits was automatically generated using this technique in a , CMOS process. Silicon measurements show good agreement with the model. The results include a PLL with a period jitter of ...
متن کاملGlobal optimization of fractional posynomial geometric programming problems under fuzziness
In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...
متن کاملEstimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming
Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...
متن کاملGeometric Programming with Stochastic Parameter
Geometric programming is efficient tool for solving a variety of nonlinear optimizationproblems. Geometric programming is generalized for solving engineering design. However,Now Geometric programming is powerful tool for optimization problems where decisionvariables have exponential form.The geometric programming method has been applied with known parameters. However,the observed values of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 53 شماره
صفحات -
تاریخ انتشار 2005